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ABSTRACT

Integrating spheres are often used as calibration sources providing uniform radiance within a solid angle
and/or uniform irradiance at a distance. The best performance in such a system can be achieved if one is able
to evaluate as well as predict the important characteristics of the sphere system’s output, such as the spatial
and angular distributions of radiance over the exit port, or the distribution of irradiance at the external plane
of calibration. We have developed the algorithms and specialized software based on Monte Carlo techniques
to solve the problem of radiation transfer inside an integrating sphere containing several point sources and
conical annular baffle. The new algorithm employs backward ray tracing coupled with the “shadow rays”
technique. As a timesaving procedure, the axial symmetry of the sphere and the superposition principle are
used to substitute the sum of single source radiation fields rotated through a specific angle, for the radiation
field of the complete multiple source sphere. The random (due to the stochastic character of the Monte Carlo
method) component of uncertainty for the radiance or irradiance results is less than 0.1%. The results of
numerical experiments are used to establish the performance variation as a function of the reflectance and
specularity of the sphere wall, the number of radiation sources, the type of baffle used, and the angular
distribution of their radiant intensity.

Keywords: integrating sphere, uniform source, radiance, irradiance, calibration, Monte Carlo, simulation,
modeling, ray tracing

1. INTRODUCTION

Integrating spheres are technically unsophisticated devices that are nevertheless very widely used in
photometry, radiometry and related fields. Among numerous applications, integrating spheres are often used
as extended-area calibration sources of uniform radiance, or as a source providing uniform irradiance at a
distance [1, 2]. In order to achieve the best performance for an integrating sphere radiation source (ISRS),
one should be able to evaluate and predict the most important characteristics of the sphere source’s output,
such as the spatial and angular distributions of radiance over the exit port, or the distribution of irradiance at
the external plane of calibration.

Although the theory of an ideal integrating sphere is very simple, deviations from Lambert’s law for
reflections off its internal surfaces, as well as the presence of ports and baffles make a non-trivial problem of
the exact computation of its characteristics. A number of analytical and numerical methods [3-6] have been
developed to resolve this problem. The common disadvantages of these methods are well known: their
applicability to only Lambertian surfaces and the growth of computational difficulties with the sophistication
of system geometry. In the last decades, very important results in computer modeling of integrating sphere
have been obtained with the help of the Monte Carlo method [7-13]

The foundation of this technique is the probabilistic treatment of radiation-matter interactions. This approach
allows construction of a stochastic model of the system being modeled and an assessment of its parameters
with a large number of ray tracing implementations. The number of realizations of a stochastic process
determines the accuracy of the solutions.
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2. OBJECTIVES

In this paper we demonstrate the usefulness of the computational method through the example of computer
modeling of the ISRS, which is intended to calibrate detectors in both spectral radiance and irradiance modes.
The primary requirement for these calibrations is the uniformity of the radiance distribution over a solid angle
subtended by the exit port of integrating sphere, and/or high uniformity of the irradiance distribution on a
plane, for instance, where detector arrays could be calibrated.

The objectives of this work are the following:
• Develop an algorithm and computer code intended for the calculation of (1) the radiance produced

by the ISRS at any given point and in any given direction as well as (2) the irradiance at any given
point of a plane;

• Perform preliminary parametric studies of radiance and irradiance distributions produced by the
ISRS.

3. COMPUTATIONAL MODEL

Because we consider only monochromatic sources, we shall omit the modifier “spectral” in the terms and
lower indices “ λ ” for radiometric quantities and in equations.

We assume geometrical (ray) optics and do not consider diffraction effects. We also assume that either the
radiation source emits unpolarized radiation, or that light is effectively depolarized by multiple reflections.

3.1 Geometry
A schematic cross section of the ISRS and embedded coordinate system are depicted in Figure 1. The model
of the ISRS includes the sphere’s internal surface 1; an annular baffle with sides 2 and 3, which is part of a
conical surface whose vertex coincides with the origin of the coordinate system, and the coordinate axis z on
which is centered the flat diaphragm 4 with aperture 0, as well as the plane 6 for irradiance measurements; the
radiation point source is located at 5.
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Figure 1: Integrating sphere radiation source. 0. Exit port. 1. Internal spherical surface.
2 and 3. Two sides of conical baffle. 4. Flat diaphragm. 5. Point source. 6. Normal plane
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For calibration in radiance mode, the choice of point zf for observation ensures that the field of view is limited
by the aperture diaphragm and the edges of the conical baffle.

3.2 Reflectance
The uniform specular-diffuse model of reflection has been used for components of the ISRS. According to
this model, the directional-hemispherical reflectance is a sum of perfectly diffuse (Lambertian) and specular
components, and both components do not depend on incident angle. Each surface can be characterized by the
value of specularity:

( ) ,ρρρρρ sdssS =+=

where sρ and dρ are the specular and diffuse components of reflectance, respectively, and ρ is their sum.

The type of reflection – relative diffuse and specular components – is chosen randomly by means of the

specularity S. If a pseudo-random number sη produced by the program’s pseudo-random number generator

(PRNG) is less than the value of specularity S, then the reflection is considered to be specular, otherwise it is
diffuse. The direction of the specular reflection can be computed by the equation
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where rω� , iω� and n
�

are vectors of the direction of reflection, direction of incidence, and the normal to the

surface at the incidence point, respectively.

The conventional method (see, for instance, [14]) to generate random directions for the Lambertian
component involves computation of the coordinates θ and φ of the local spherical coordinate system after

simple transformation of a pair of pseudo-random numbers θη and φη according to
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with the subsequent transformations first to the local Cartesian coordinate system and then to the global one.

The speed of the search for the ray intercept with the spherical surface after diffuse reflection from the same
surface can be significantly increased by using the following fact: the surface of any sphere, which is tangent
to the surface of a Lambertian reflector in the point of reflection, is a surface of uniform irradiance. Hence, in
order to model the chain of diffuse reflection points on the internal surface of a sphere, it is sufficient to
generate the chain of points uniformly distributed over this surface. We used the algorithm of G. Marsaglia

[15] to obtain the points uniformly distributed on the spherical surface 1222 =++ zyx . The algorithm

consists in the following. After a linear transformation of the pair of pseudo-random numbers xη and yη :
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where the points with coordinates xux = and yuy = are uniformly distributed within the square

( )1,1 <<− yx . If 122 >+= yx uus (a point is outside the circle of unit radius), the pair of pseudo-
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random numbers xη and yη is rejected, and a new pair is generated. Otherwise, the coordinates of the point

on the surface of the unit sphere are
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For a sphere of radius R , the coordinates of the point in previous equation must be multiplied by R .

3.3 Radiation sources
In practice, the several types of radiation sources may be employed: laser beam coupled with diffuser; laser
radiation input through the special small opening in spherical wall when the narrow laser beam hits the
spherical surface along its normal; light emitting diodes (LEDs) etc.

The sphere includes up to N equidistant radiation sources of this kind separated by a central angle of 360°/N –
we shall consider the sphere with a single source, using the additivity principle and derive the radiation field
produced by several sources through summation of the radiation fields produced by the each sources
separately that have been rotated by appropriate angles. We also shall consider such source as point source
with radiant intensity

( ) ( ) ssss II θ
π

νθ νcos0
2

1+= ,

where sθ is the angle between the direction of emission and the normal to the sphere surface, [ )∞∈ ,0ν ;

=ν 1 corresponds to a Lambertian point source. Due to the normalization factor
π

ν
2

1+
, the source will

have the same radiant flux for any value of ν .

4. BRIEF DESCRIPTION OF THE MONTE CARLO ALGORITHM

4.1 Radiance calculation
The first application of our model and computational algorithm is the computation of sphere source radiance
at a given point and in a given direction. For problems of this kind, algorithms employing forward ray tracing,
where rays emitted by the source are traced until they escape the ISRS, are very inefficient. On the other
hand, our assumption of an infinitesimal (point) source – makes backward ray tracing, where rays are
originated at a point of observation and traced in opposite direction until they intercept the source, even more
impractical. Hence we construct a new algorithm that employs backward ray tracing coupled with the
“shadow rays” technique [16].

A key element of our algorithm is the analytical computation of irradiance produced by direct source
radiation for each point of diffuse reflection. The irradiance at a point P of any surface is equal to
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where V(P) is the vignetting function, which is equal to 1, if no obstruction exist between point P and the

source, and to 0 – otherwise; Sθ and Pθ are angles between the normals to the ISRS surfaces at the point

source and at the point P, respectively, and d is the distance between the point P and the source. The radiance
of diffusely reflected radiation for irradiation of a surface computed by the previous equation, is equal to
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If 1, 2, 3, … is a series of intercepts obtained as a result of the application of the directional importance
sampling method to the ISRS with all Lambertian surfaces, then
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Averaging the realizations of ( )θiL over a large number n of rays traced, we can write
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where the first term in the brackets is the radiance of direct source radiation (if any), the second term is the
sum of radiances produced by the source at the points of successive diffuse reflections by backward ray
tracing. The flow chart for this algorithm is depicted in Figure 2.

We have computed the distribution of radiance over the ISRS aperture by tracing the rays from a point with
coordinates (0, 0, zf) to the nodes of a rectangular grid superimposed on the plane of the exit port. All results
shown in this paper correspond to such grid with coordinate x and y, normalized on the radius Ra of exit port.

4.2 Irradiance calculation
We have also computed the distribution of irradiance in a plane normal to the ISRS axis at a coordinate
location zp, inside the circle of radius
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The irradiance inside this circle is determining by the radiation, incident from behind the target area of the
ISRS. We superimpose a rectangular grid on this circle and compute the value of irradiance at each node with

222
pRyx <+ .
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Start ray tracing
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Figure 2: Flow chart of “shadow rays” algorithm.

To do this, we generate points ( )aaiai zyx ,, uniformly distributed over the sphere exit aperture and compute

the radiance ikL at the node point ( )ppipi zyx ,, in the direction, determined by the vector 0ω� with
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where ( ) ( ) ( )222
papkaipkaiik zzyyxxd −+−+−= .

We compute the irradiance at every node using the equation
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where n is the number of rays traced through the exit port from k-th node, ikθ is the angle of incidence of i-th

ray on k-th node.

5. DISCUSSION OF RESULTS

5.1 Input parameter data
The defining geometry parameter value are (all dimensions in mm): sphere radius R = 202.3; aperture radius
Ra = 37.5; za = 198.8 (so that the flat diaphragm is absent); the coordinates of the conical baffle edges are zb1

= - 81.28, zb2 = - 44.85; zp = 350. Using these data one can find zf = 288, Rp = 26.1, and the full FOV from the
point (0, 0, zf) is 45.6°. We modeled the ISRS with modest values of wall reflectance – 0.9…0.94 that are
appropriate for coatings designed for the infrared spectral range of 2 to 20 µm. Two main cases are examined:
(i) the conical baffle and sphere are fabricated from the same diffuse material and (ii) baffle is fabricated from
polished aluminum with reflectance ρ = 0.985 and specularity S = 1.

5.2 Evaluation of modeling accuracy
The convergence of results depends on several factors, such as the values of the geometrical parameters, the
reflectance and specularity of the sphere’s internal surfaces, as well as the number of rays traced and the
maximum number of reflections of a ray. We have evaluated the computation accuracy of radiance and
irradiance values using the standard technique of statistical processing of repeated measurements, treating the
results of numerical experiments in the same manner as the results of measurements. In order to avoid any
potential error due to ray trajectory truncation, we use a threshold value for statistical weight =δ 0.01%. For

the purely diffuse sphere with == bs ρρ 0.9, 105 rays are enough to obtain a standard deviation of random

uncertainty less than 0.1% in all cases examined in this paper. This corresponds to about 20 seconds per point
running on a 2.2 GHz Pentium IV processor PC.

The above estimation is confirmed implicitly by the calculation of radiance distribution from Lambertian
sphere with a Lambertian source and no baffle (such configuration has trivial analytical solution – uniform

radiance distribution): for =sρ 0.9 we obtain the value of root-mean-square nonuniformity of about 0.05%.

5.3 Radiance distribution results
Some results of numerical experiments modeling radiance distributions are depicted in Color Plates A and B.
In every column of color plates A and B the radiance distributions over the ISRS exit port produced by 1, 3,
and 5 equidistant point sources are depicted. For the first rows, single radiation source is placed at the top of a
picture.

We use rectangular grid with 51×51 nodes uniformly covering the exit port. The observation point is located
at coordinates (0, 0, zf). We use the dimensionless coordinates X = x/Ra and Y = y/Ra and a bilinear
interpolation [17] to obtain the color radiance map with the scale indicated at the side of each map. The

program computes the normalized radiance L′ as the ratio of actual radiance L to its mean value L for all

-1 < X, Y < 1 and the standard deviations from the mean level L′ by the equation
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where m is the number of nodes.

For purely diffuse sphere and Lambertian point source the best uniformity of irradiance distribution over
internal spherical surface is attained by removing the baffle, thus there is no subject of optimization. Every
deviation from cosine of the radiant intensity angular distribution for a point source placed on sphere’s
internal walls leads to uprising of nonuniformities, whose amplitude is maximal for the first reflection and
decreases with reflection order growth. In this case, the use of internal baffle for prevention of direct
irradiation of the sphere visible area by the source allows improving the uniformity of irradiance distribution
over visible area.

The radiance distributions from purely diffuse (S = 0) ISRS and non-Lambertian point sources with ν = 2 are
presented in Color Plate A: the left columns corresponds to reflectance of all surfaces ρ = 0.9, the right one –
to ρ = 0.94. The significant decrease of radiance nonuniformity (2 – 2.5 times) is achieved at the use of 3
symmetrically located radiation sources. The numerical experiments shown that the further increase of
number of radiation sources doesn’t lead to radiance distribution flattening. The explanation of this fact could
be the following. All nonuniformities could be conditionally divided on radial and angular. Radial
nonuniformities (like symmetrical inflations or valleys) in principle cannot be eliminated by the increase of
number of sources.

In the left column of Color Plate B, the radiance distributions from diffuse sphere with ρ = 0.9 and specular
(S = 1) baffle with ρ = 0.985 are depicted. The results of modeling show that the use of specular baffle
improves the radiance distribution nonuniformity as compared with the purely diffuse ISRS.

The case of all diffuse surfaces with ρ = 0.9 and non-Lambertian point sources with ν = 3 is depicted in the
right column of Color Plate B. Such source with cos2θ dependence of radiant intensity on incidence angle
produces radial rather than angular nonuniformities. Note that artifactual patterns on the several maps for 3
and 5 sources are due to the moiré effect for discrete images.

The numerical experiments performed for non-zero specularities of sphere’s walls (these results are not
included into Color Plates) shown the existence of high and acute peak at the center of exit port. This peak is
unobservable in experiments and is an effect of too rough approximation of real BRDF of materials in the
infrared region by the specular-diffuse model.

5.4 Irradiance distribution results
In every column of color plate C the irradiance distributions over the circle of radius Rp in the plane z = zp

produced by 1, 3, and 5 equidistant point sources are depicted. As in the case of radiance modeling of
distributions, we use a bilinear interpolation between 51 × 51 nodes of rectangular grid and the dimensionless
coordinates X = x/Rp and Y = y/Rp. The program calculates the normalized irradiance E ′ as the ratio of actual

irradiance E to its mean value E for all -1 < X, Y < 1, as well as the standard deviations from the mean

level E ′ by the equation
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In the left column of Color Plate C, the irradiance distributions from ISRS with all diffuse surfaces and ρ =
0.9 are depicted. Due to high angular uniformity (axial symmetry), an increase in the number of radiation
sources can’t appreciably change the value of s ≈ 0.97%.

The case of a specular baffle having ρ = 0.985 shows an initially (for a single radiation source) small
irradiance nonuniformity of about 0.4%. The joint action of 3 symmetrically placed sources decreases this
value down to 0.17%.

6. CONCLUSIONS

We have described an approach to computer modeling of the ISRS with several point radiation sources. A
Monte Carlo algorithm and appropriate software for the computation of radiance and irradiance distributions
produced by the ISRS have been developed. Preliminary parametric studies of the influence of important
factors such as the reflectance and specularity of the sphere and baffle, the number of point sources and the
angular distribution of radiant intensity, have been performed.

The analysis of results obtained enables us to select the directions of further research and computational
model improvement. We plan to change the model of the source from a single point to a more realistic
extended source one. The numerical experiments performed with the specular-diffuse model of sphere wall
reflectance show the necessity of improvement to the use of real BRDF as input data to modeling.
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